

Digital Level Sensor Model 2100

User Manual January 2023

EL# 29003_rev.C

Copyright©2018-2023, Electrolab, Incorporated. All rights reserved. This document may not be reproduced, copied (except for a single archive copy), used, disclosed, transferred (including sold, leased, or rented) adapted or modified except in accordance with the terms and conditions of the License Agreement between the user and Electrolab, Inc.

Electrolab, Inc. makes no representations of warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability of fitness for any particular purpose. Electrolab, Inc. reserves the right to revise this publication and to make changes from time to time in its content without the obligation to notify any person or organization of such revision or changes.

Table of Contents

Description1
Communications1
Wiring Connections
Installation1
DLS Calibration Procedure - Setting the Initial Offset
Procedure
Testing and Troubleshooting4
Digital Level Sensor Protocol
Command syntax 4
Data Request Commands
Configuration Commands 6
Configuration Request Commands10
Modbus Registry Map
Table 1. Read/Write Registers
Table 2. Holding Registers
Table 3. Holding Registers (2 x 16 bit)17
Table 4. Warning Codes
Table 5. Error Codes
Notes for advanced users 20
Model 2100 DLS Specifications
Part Numbering System
Contact Information

Description

The Model 2100 Digital Level Sensor is a solid-state device that measures and reports fluids level and temperatures in storage tanks. It is called a digital sensor because it reports the information in a serial bit stream. The sensor uses a float imbedded with magnets to sense the top of a fluid level(s). There is a temperature sensor mounted inside the tube fourteen inches from the bottom. When the sensor is polled for data, a series of microprocessors read and determine the position of the float(s) along the sensor tube. The main microprocessor then calculates the level and temperature and returns the data in a serial stream.

Communications

The serial communication protocol is RS485 2-wire or 4-wire, field selectable via jumpers on the fuse board. The baud rate is set to 9600, N, 8, 1. In 4-wire mode, one pair of wires is used strictly for transmitting and another pair is for receiving. For 2-wire mode, only one pair of wires is needed for both transmit and receive. Two wires are needed for the power supply, therefore 4-wire communications require a 3-pair cable while 2-wire communications require a 2-pair cable.

Wiring Connections

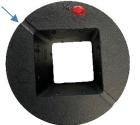
The sensor requires a power supply of 5.6 to 12.9 volts DC. To connect the sensor communication lines to the telemetry equipment, connect the sensor data receive to the RTU data transmit and the sensors data transmit to the RTU data receive. The voltage supply can be connected to a switched output so power is applied only during sensor polling.

Installation

To install the sensor, follow the simple steps below while referring to the assembly diagram in Figure 2 at the end of this manual:

- 1. For stainless steel square tube sensors, install the 2-inch hub sensor-grip and a reducer for the tank port size that is to be used. Slide this assembly onto the bottom of the tube. *Go to Step 3.*
- 2. For round fiberglass tube sensors, install a reducer for the tank port size that is used on the tank. The reducer should be fed up the sensor tube and screwed onto the sensor cord grip fixed to the top of the sensor. Be careful tightening the cord grip and reducer so as not to damage the sensor. Loosen the cord grip and slide the assembly as far up the sensor as it will go. Hand-tighten it at this point. Reattach the upper hose clamp around the sensor tube at the top of the side strip.

3. Slide the float up on to the sensor.


For Nitrophyl floats:

On stainless steel sensors, the **yellow strip** on the side of the sensor tube must match up with the **white mark** on the float.

On round fiberglass tubes, the white mark will line up on the ridge.

If using the Hazardous Environment (HE) float

On a stainless steel sensor, the **yellow strip** on the side of the sensor must match up with the embossed area on the top of the float (see arrow below). **Note:** The HE float is only available for 1/4-inch resolution stainless steel sensors.

- 4. Install the float stop at the bottom of the sensor tube.
- 5. Carefully insert the bottom end of the sensor into the tank top port and lower the sensor slowly into the tank. Be careful with the float so it does not hang up on the port edge.

CAUTION: DO NOT drop the sensor into the tank. The sensor contains many glass reed switches and a sharp impact will break them.

- 6. When the sensor end is resting on the tank bottom, slide the reducer/sensor-mount assembly down to the tank port and tighten it into the port. Tighten the sensor mount tight enough so the sensor cannot rotate by hand.
- 7. Unscrew the round side cover from the sensor top housing and feed the signal cable through the cord grip on the side of the sensor top. Unplug the gray, 6-position connector from the internal fuse board.
- 8. Make sure power is off before proceeding.
- Using the white depressor tool, install the six wires (4-wire communication) or four wires (2- wire communication) as directed in the connection (hook-up) diagram in Figure 3.
- 10. Plug in the connector and replace the side cover.

DLS Calibration Procedure - Setting the Initial Offset

The Model 2100 Digital Level Sensor is designed to provide an accurate and dependable level measurement for oil and water levels in production tanks. The only calibration required is to set the offset value in the DLS. This can be done in the DLS or at the EFM, RTU, or PLC by determining the difference of the level between the electronic reading and the actual fluid level in the tank, measured with an approved gauge line. Once the level offset is entered in either the DLS or SCADA system, the level offset will be added to the raw value of the DLS to provide an accurate fluid level.

The level offset is determined by reading the DLS with the HHC-1000 Hand-Held Communicator while simultaneously gauging the level in the tank. For best results, the tank should *not* be in active production so that the fluid is not agitated at the time of reading. If it is not possible to isolate the tank, then it is recommended to take several readings of both the DLS and gauge line to make sure the readings are consistent.

Note: If there is no fluid in the tank, the level offset cannot be determined.

Note: The level offset is always added to the raw value. If a mistake is made when entering the level offset, reset the offset value to zero before proceeding to avoid large swings in readings. If there is an offset programmed in the DLS and the actual level is not correctly displayed, simply changing the offset value will **not** include the previous offset value.

Example: If a 1.50" offset is in the DLS and the DLS is still reading ¼" below actual level, the true offset should be 1.75". If you add a ¼" offset, the level reading will be 1.50" below actual level. Resetting the level offset to zero will make it easier to determine the correct offset value.

Procedure:

- 1. Using the Hand-Held Communicator (HHC-1000), connect to the DLS and take initial readings of level and temperature. Refer to the *HHC -1000 User Manual* for instructions.
- 2. If readings are providing both water and oil levels, then verify that the two readings are more than 3" apart. If the difference is less than 3", the two floats will be touching and a valid offset cannot be determined.
- 3. Verify that the water level is more than 3". If less than 3", then the water float is sitting on the bottom of the tank and level offset cannot be determined.
- 4. Using a gauge line, measure the actual level in the tank and note the level. Subtract the electronic reading from the gauged level to determine the level offset value.

For example, if the actual level is 156.25" and the DLS reading is 155.50", then the offset value will be 0.75" (156.25-155.50=0.75).

- 5. To program the level offset in the DLS using the HHC-1000, go to the "Set Points" menu and then to the "Level" menu. Press F2 in the "Level" menu to bring up the level offset screen.
- 6. To set the total fluid level offset, enter a value of *1* for the top float and then enter the offset value. If the value is less than one, enter the decimal value, then press "Enter."
- 7. To set the water-interface level offset, enter a value of 2 for the bottom float, then enter the offset value, and press "Enter."
- 8. To verify that the offset is correct, return to the main screen and then read level and temperature values to verify the DLS is reading correctly.
- 9. Once the level offsets are entered, there is no further calibration required unless the DLS is removed and reinstalled in **another** tank.

Testing and Troubleshooting

If the sensor fails to respond or does not report an accurate level, several things could be at fault. See the list of symptoms below for help in diagnosing the problem.

Sensor does not respond:

Sensor is new and recently installed:

- The sensor wiring is incorrect: check with sensor connection (hook-up) diagram.
 - Wrong baud rate: (Factory default is 9600)
 - Wrong protocol: (Factory default is N81)
 - There is insufficient voltage: The sensor needs at least 5.6 VDC.

Sensor has been in service for some time but is not working:

- There are corroded connections or damaged cables.
- Blown fuse or shorted suppressor on the barrier board (if equipped). Check the fuses with a continuity tester.
- There is possible damage to sensor electronics.

Sensor sends inaccurate level or temperature:

- An incorrect level or temperature offset is programmed into sensor, RTU, or host.
- An incorrect number of floats are programmed. Check the sensor protocol list to reprogram the sensor with the correct information.

Sensor sends temperature but no valid level:

- If the sensor reports error code 1, the float is not on the sensor in the correct orientation. The white mark on the float must be on top of the strip on the side of the sensor (rigid sensors only).
- An incorrect number of floats are programmed. Check the sensor protocol command list to reprogram the sensor with the correct information.

Digital Level Sensor Protocol

Command syntax

- Uppercase characters denote littorals in the command and response streams.
- Lowercase characters represent data fields in the command and response streams. Further explanation of data field structure is provided as necessary with each command.
- All commands are terminated with carriage return <cr>.
- All responses are terminated with Ccccc (cccc=16 bit CRC field in hexadecimal) followed by a carriage return linefeed pair <cr><lf>. All alpha hexadecimal characters are lower case.
- The prefix to all commands and responses is **Uuu** where *uu* is the unit number (00-31). The unit number is the identity of the level sensor to which a command is addressed or which generates the response. '*' may be used as a wild card character for either digit in

the unit number field 'uu'. The responding level sensor will always convert wildcard characters to the actual unit number.

• Commands, which modify a level sensor configuration, always return the command string and 'OK' if successful. 'EEerr' replaces 'OK' if there is a problem storing the configuration data in the level sensor EEPROM.

Data Request Commands

Report Level and Temperature

Uuu?

where uu is a two-digit unit number from 00 to 31("*" may be used as a wildcard for either digit)

Note: Do Not use the wildcard "**" if connected to more than one level sensor, as all sensors will respond simultaneously.

Response: UuuDIII.IIFtttEeeeeWwwww

where uu = unit number III.II = level in inches (repeated for sensors with 2 floats) ttt = temperature in degrees F eeee = error number 0 = No errors

1= No float detected

2 = One float is out of range on a two-float sensor

3 = Too many groups

4 = (reserved)

5 = Transmit to slave processor for level failed

6 = Transmit to slave processor for temperature failed

7 = Receive from slave processor of level failed

8 = Receive from slave processor of temperature failed

9 = No slave processors responding

Note: If errors 5 through 9 occur and persist after power cycling, the sensor should be returned for repair.

wwww = warning number 0 = No warnings 1 = Possible level degradation

Under normal circumstances the warning field is 0. It will display 1 if the sensor is configured for two floats and only one group of switches is detected (i.e., only one float is present or both floats are abutted).

Note: The number of decimal places in a data field implies nothing about the accuracy of the data, *i.e.,* levels are not accurate to 0.01 inches.

Report Level and Temperature Continuously (factory diagnostics) Uuu??

Response: **Same as above**, except continuously with internal module configuration and reported individual switch activation and groups of activated switches.

Note: The unit must be powered down before it will respond to other commands.

Report 4-20mA Output Level (version 3.09 and higher)

Uuu?M
Response: UuuMhhhhEeeeeWwwww
Where uu = unit number
hhhh = hex value 0x0000-0xFFFF
eeee = error number
0 = No errors
1= No float detected
2 = One float is out of range on a two-float sensor
3 = Too many groups
4 = (reserved)
5 = Transmit to slave processor for level failed
6 = Transmit to slave processor for temperature failed
7 = Receive from slave processor of level failed
8 = Receive from slave processor of temperature failed
9 = No slave processors responding

Note: If errors 5 through 9 occur and persist after power cycling, the sensor should be returned for repair.

wwww = warning number (0 means "No warnings")

0 = No warnings 1 = Possible level degradation

Report Temperature Only

Uuu?T Response: UuuFxxEeeeeWwwww Where xx= temperature

Configuration Commands

Assign Unit Number

UuuNnn Where uu = unit number (from 00 to 31) nn = new unit number

Note: Unit number 00 is not valid in Modbus RTU mode

Response: UuuNOK

Where uu = newly assigned unit number Assign Unit Number to Sensor With the Corresponding Serial Number (version 3.15 and higher) UsssssssNnn sssssss = seven-digit serial number nn = two-digit unit number Response: UuuNOK uu = new unit number UuuEerr Write to EEPROM failed

Set Baud Rate

UuuBbbbb[b][pds] Where bbbb[b] = 1200, 9600, 14400, 19200, 38400, or 57600 (9600 is default) (v3.15 and higher) pds = parity, data length, stop bit (pds options) N81 (default) E71 O71 For example, to program Unit 00 to 9600 E 7 1 would be U00B9600E71

Note: It is not necessary to power down the Model 2100 before this command takes effect. The Model 1000 must have power cycled for this command to take effect.

Response: UnnBOK Set Number of Floats UuuFn Where uu = unit number n = float number (1 or 2 – Standard; 11 or 12 – 1/8" Resolution; 11 – Single Float; 12 – Dual Float)

Response: UuuFOK

Set Level Offset

UuuLOsIII Sets the offset for the level sensor Where uu = unit number sIIII = sign and offset with two implied decimal places

Note: If two floats, assigns the same offset to both

Response: UuuOLOK

Set Level Offsets for Individual Floats UuuL[1|T]OslII.II Sets the top float offset. Example of setting top level offset for Unit 00 to 2.25 inches - U00L102.25

UuuL[2]B]OsIII.II Sets the bottom float offset. (*Dual Float Sensor only*)
Example of setting bottom level offset for water interface to 1.75 inches - U00L2O1.75
Where
uu = unit number
sill.II = sign and offset with two implied decimal places.
The Plus (+) sign is assumed.
The Minus (-) must precede the offset value if required.
If no decimal places are required, then you do not need to add to value

Note: "O" in the command is the letter O and not the number zero

Response: UuuLOOK

Set Temperature Offset

UuuOFsoo Where uu = unit number soo = -99 to 99 (optional sign)

Response: UuuOFOK

Set Multiple Temperature Sensor Offsets UuuTnOso.o

Where uu = unit number n = temperature sensor identifier (1-8, 1 is at top) so.o = -9.9 to 9.9 degrees (optional sign)

Response: UuuTnOOK

Set Receive to Transmit Delay

UuuRmmm Where uu = unit number mmm = milliseconds (50 to 250). The default is 127ms

Response: UuuROK

Set 4-20mA Poll Period

UuuMPpppp Where uu = unit number pppp = seconds (Default is 30 seconds)

Response: UuuMPOK

Note: Poll Periods less than 20 seconds may shorten the life expectancy of the 4/20mA converter board. The relay (which power cycles the sensor to reduce power consumption) is rated for 10,000,000 cycles.

Set 4-20mA Minimum (4mA) Range

UuuMINmm.mm Where uu = unit number mm.mm = level for 4mA output (Default is 00.00) Response: UuuMINOK

Set 4-20mA Maximum (20mA) Range

UuuMAXmmm.mm Where uu = unit number mmm.mm = level for 20mA output in inches (Default is 240.00") Example: For 20-foot long sensors = 240.00 Response: UuuMAXOK

Set the Level Error setting (version 3.09 and higher)

UuuSETERRx Where uu = unit number x = 0 will set the level error report to be 999.99. This is the default setting. x = 1 will set the level error report to be 000.00.

Response: UuuSETERROK

Set the Modbus 16 bit Unsigned Integer, 32 bit or 2 x 16 bit floating point mode UuulFxxxx

Where uu = unit number xxxx = 1007 will set the 16 bit Unsigned integer mode. This is the default setting. xxxx = 1008 will set the 32 bit floating point mode. xxxx = 1009 will set the 2x16 bit floating point mode (v3.14 and higher).

Response: UuuIFOK

Force sensor to enter Boot Load mode (version 3.15 and higher, (future use) UUUFB

uu = two-digit unit number

Response: none

Enter High Level Electronic Shut Down (ESD mode) (version 3.15 and higher) UuuESDONn

uu = unit number

n = one-digit number from 1 to 3 which represent the number of level request commands that will respond with the maximum level without cycling power. After this number, the sensor reverts to normal operation (Note: If power is cycled the count reverts back to programmed number of polls).

Response: UuuESDONOK ESD mode was successfully activated

Exit High Level Electronic Shut Down (ESD mode) (version 3.15 and higher) UuuESDOFF

Response: UuuESDOFFOK ESD mode exit successfully

Note: UuuESDON0 also turns off ESD mode

Configuration Request Commands

Report Number of Floats

UuuF? Response: UuuFn Where uu = unit number n = number of floats (1 or 2 – Standard; 11 or 12 – 1/8" Resolution; 11 – Single Float; 12 – Dual Float)

Report Level Offsets

UuuLO? **Response:** UuuL1Osnn.nnL2Osnn.nn Where uu = unit number snn.nn = sign and offset with two implied decimal places

Report Temperature Offset

UuuOF? Response: UuuOFsff Where uu = unit number s = sign ff = temperature offset (degrees F)

Report Multiple Temperature Offsets UuuTO? Response: UuuTnOso.o....= TnOsn.n repeated for additional temperature sensors Where uu = unit number n = temperature sensor (1-8, 1 is top sensor) s = sign o.o = temperature offset

Report Switch Distance

UuuD? Response: UuuDd Where uu = unit number d = distance between switches as integral tenths of an inch (e.g., 5 = 0.5 inches, 10 = 1 inches)

Report Total Switches

UuuS? Response: UuuSssss Where uu = unit number ssss = total number of switches in the sensor

Report Receive to Transmit delay

UuuR? Response: UuuRmmm Where uu = unit number mmm = delay in milliseconds

Report 4-20mA Configuration

UuuMC?

Response: UuuPppppL1_4MAII.II_20MAhhh.hh Where uu = unit number Ppppp = Polling period in seconds L1 = Data source is top float _4MAII.II = Level to output 4 mA _20MAhhh.hh = Level to output 20 mA

Report Serial Number

UuuSN? Response: UuuSNxxxxxx Where uu = unit number xxxxxxxx = serial number.

Report Unit Number corresponding to Serial Number (version 3.15 and higher) UsssssssN?

sssssss seven digit serial number Response: UsssssssNuu uu = unit number

Report sensor Health Status (version 3.15 and higher)

UuuH? uu = two digit unit number Response:

> grp0=ttt-bbb--grp1=ttt-bbb grp3=ttt-bbb--grp4=ttt-bbb UuuDIII.II[DIII.II]Fttt[Fttt......]EeeeeWwwww BATTERY-VOLTAGE:vv.vV

If sensor works in normal operation parameters the message will be UuuSENSOR-OK

Error, one or more of the following Error messages

NO-SWITCH-CLOSED ONLY-ONE-GROUP-FOUND-ON-A-TWO-FLOAT-SYSTEM TOO-MANY-GROUPS-TO-RESOLVE-THE-LEVEL NO-FLOAT-CONFIGURED TRANSMIT-TO-PIC-PROCESSOR-FOR-LEVEL-FAILED RECEIVE-FROM-PIC-PROCESSOR-FOR-LEVEL-FAILED RECEIVE-FROM-PIC-PROCESSOR-FOR-TEMP-FAILED

Warning, one or both of the following Warning messages:

WARNING!-POSSIBLE-LEVEL-DEGRADATION WARNING!-POSSIBLE-LEVEL-DEGRADATION-DUE-TO-OFFSET

Report the Level Error Setting (version 3.09 and higher)

UuuSETERR? Response: UuuSETERR=x Where uu = unit number x = 0 is set for level error report to be 999.99 (default) x = 1 is set for level error report to be 000.00

Report the Modbus 16 bit Unsigned Integer, 32 bit or 2 x 16 bit floating point mode UuuIF?

Response: UuuIF=x Where uu = unit number x = 0 is set for 16 bit Unsigned integer mode. This is the default setting. x = 1 is set for 32 bit floating point mode. x = 2 is set for 2x16 bit floating point mode (v3.14 and higher) UuuBV? Response: UuuBVvv.vV Where

Report Battery Voltage

uu = unit number vv.v = battery voltage in volts

Modbus Registry Map

Read/Write functions are given in Table 1. The read only functions in the holding registry are referenced in Table 2 & Table 3. The sensor warnings codes are provided in Table 4. Error codes are given in Table 5.

Table 1. Read/Write Registers

Configuration Registers	Register Read/Write	Address	No. Reg.	Notes	Integer Type
ESD ON: 0 = ESD off	40106	105	1	R/W Factory	16 bit
1 to 3 ESD ON, 1 to 3				setting: 0	Unsigned
times					(v3.15 and
					higher)
Assign Sensor unit	40107	106	1	Default value is	16 bit
number				1	Unsigned
Select 16 bit	40108	107	1	Factory setting:	16 bit
unsigned integer (0)				16 bit	Unsigned
or 32 bit floating				unassigned	
point (1) for registers				integer (see	
that hold top float,				Note for	
bottom float, and				advanced	
temperature or 2x 16				users)	
bit floating point (2)					
Set baud rate (1200,	40109	108	1	Factory setting:	16 bit
9600, 14400, 19200,				9600	Unsigned
38400) (57600 V3.15					
and higher)					
Set parity:	40110	109	1	Factory setting:	16 bit
78 (N) = No parity				78 (N)	Unsigned

70(0) - 0dd parity					
79 (O) = Odd parity 69 (E) = Even parity					
Set data bit: 8	40111	110	1	Factory setting:	16 bit
	10111	110	-	8	Unsigned
Set stop bit: 1	40112	111	1	Factory setting:	16 bit
				1	Unsigned
Rx to Tx delay [ms]:	40113	112	1	Factory setting:	16 bit
50 to 250				127	Unsigned
Set number of floats:	40114	113	1	Factory setting:	16 bit
1, 2, 11 or 12				1	Unsigned
Level error report: 0	40115	114	1	Factory setting:	16 bit
or 1				0	Unsigned
K factor x 100: 10 to	40116	115	1	Factory setting:	16 bit
1000 bbls/in				167	Unsigned
Top level offset x	40117	116	1	Factory setting:	16 bit Signed
100: -9999 to 9999				0	
Bottom level offset x	40118	117	1	Factory setting:	16 bit Signed
100: -9999 to 9999	40140	110		0	
Temperature offset1	40119	118	1	Factory setting:	16 bit Signed
x 10: -99 to 99 Temperature offset2	40120	119	1	0	16 bit Signad
x 10: -99 to 99	40120	119	L	Factory setting: 0	16 bit Signed
Temperature offset2	40121	120	1	Factory setting:	16 bit Signed
x 10: -99 to 99	40121	120	1	0	TO DIT Signed
Temperature offset4	40122	121	1	Factory setting:	16 bit Signed
x 10: -99 to 99	10122		-	0	10 010 018/100
Temperature offset5	40123	122	1	Factory setting:	16 bit Signed
x 10: -99 to 99				0	0
Temperature offset6	40124	123	1	Factory setting:	16 bit Signed
x 10: -99 to 99				0	
Temperature offset7	40125	124	1	Factory setting:	16 bit Signed
x 10: -99 to 99				0	
Temperature offset8	40126	125	1	Factory setting:	16 bit Signed
x 10: -99 to 99				0	
Sensor Description R				1	T
Serial number high	40127	126	1	Read only	16 bit
<u> </u>					Unsigned
Serial number	40128	127	1	Read only	16 bit
medium high	40422	422			Unsigned
Serial number	40129	128	1	Read only	16 bit
medium low	40120	120	1	Dood only	Unsigned
Serial number low	40130	129	1	Read only	16 bit
Version number	40131	130	1	Read only	Unsigned 16 bit
	40131	120	–	neau utily	Unsigned
Number of modules:	40132	131	1	Read only	16 bit
1 to 8	+0132	1.31			Unsigned
1.00				1	Unsigned

Number of switches	40133	132	1	Read only	16 bit
Number of Switches	40133	152	-	nead only	Unsigned
Switch distance x 10:	40134	133	1	Read only	16 bit
5 or 10	40134	133	-	nead only	Unsigned
Number of	40135	134	1	Read only	16 bit
temperature sensors:	40133	134	1	Nead only	Unsigned
1 to 8					onsigned
Sensor status: 0 or 1,	40136	135	1	Read only	16 bit
0= Good	40130	135	-	nead only	Unsigned
1= Sensor errors or					(v3.15 and
low battery					higher)
Group 0 top	40137	136	1	Read only	16 bit
0.00p 0.00p			_		Unsigned
					(v3.15 and
					higher)
Group 0 bottom	40138	137	1	Read only	16 bit
				,	Unsigned
					(v3.15 and
					higher)
Group 1 top	40139	138	1	Read only	16 bit
					Unsigned
					(v3.15 and
					higher)
Group 1 bottom	40140	139	1	Read only	16 bit
•					Unsigned
					(v3.15 and
					higher)
Group 2 top	40141	140	1	Read only	16 bit
					Unsigned
					(v3.15 and
					higher)
Group 2 bottom	40142	141	1	Read only	16 bit
					Unsigned
					(v3.15 and
					higher)
Group 3 top	40143	142	1	Read only	16 bit
					Unsigned
					(v3.15 and
					higher)
Group 3 bottom	40144	143	1	Read only	16 bit
					Unsigned
					(v3.15 and
					higher)

Table 2. Holding Registers

Sensor Data	Register	Address	No. Reg.	Values	Туре
Float 1 (Top	43991	3990	1	Read Only	Total Fluid Level in
Float)					Tank
,					16 bit Unsigned
					integer or 32 bit
					floating point
Float 2	43992	3991	1	Read Only	Water Interface
(Bottom				-	Level in Tank
, Float)					16 bit Unsigned
/					integer or 32 bit
					floating point
Oil Level in	43993	3992	1	Read Only	Oil Level in Tank
Tank (top to					(top-bottom)
bottom)					16 bit Unsigned
bottoniy					integer or 32 bit
					floating point
Total Volume	43994	3993	1	Read Only	Total Volume (top
(top level x			_		level x K factor)
K factor)					16 bit Unsigned
K_Iactory					integer or 32 bit
					floating point
Oil Volume	43995	3994	1	Read Only	Oil Volume
	43995	3334	1	Read Only	16 bit Unsigned
(top level –					_
bottom level)					integer or 32 bit floating point
x K_factor					
Water	43996	3995	1	Read Only	Water Volume
Volume					16 bit Unsigned
(bottom level					integer or 32 bit
x K_factor)					floating point
Temperature1	43997	3996	1	Read Only	Temperature1
				-	16 bit Unsigned
					integer or 32 bit
					floating point
Temperature2	43998	3997	1	Read Only	Temperature2
				,	16 bit Unsigned
					integer or 32 bit
					floating point
Temperature3	43999	3998	1	Read Only	Temperature3
				,	16 bit Unsigned
					integer or 32 bit
					floating point
Temperature4	44000	3999	1	Read Only	Temperature4
P			_		16 bit Unsigned
					integer or 32 bit
					floating point
Temperature5	44001	4000	1	Read Only	Temperature5
remperatures	44001	4000	<u>ــــــــــــــــــــــــــــــــــــ</u>	neud Only	remperatures

					16 bit Unsigned
					integer or 32 bit
					floating point
Temperature6	44002	4001	1	Read Only	Temperature6
					16 bit Unsigned
					integer or 32 bit
					floating point
Temperature7	44003	4002	1	Read Only	Temperature7
					16 bit Unsigned
					integer or 32 bit
					floating point
Temperature8	44004	4003	1	Read Only	Temperature8
					16 bit Unsigned
					integer or 32 bit
					floating point
Battery	44005	4004	1	Read Only	Battery Voltage
Voltage					(*100 for 16 bit)
					16 bit Unsigned
					integer or 32 bit
					floating point
Error	44006	4005	1	Read Only	16 bit Unsigned
Register:				-	integer (See Notes)
Warnings	44007	4006	1	Read Only	16 bit Unsigned
Register:					integer (See Notes)

Table 3. Holding Registers (2 x 16 bit)

Sensor Data	Register	Address	No. Reg.	Values	Туре
Float 1 (Top Float)	45001	5000	2	Read Only	Total Fluid Level in Tank Floating point upper two bytes (v3.14 and higher)
	45002	5001		Read Only	Total Fluid Level in Tank Floating point lower two bytes (v3.14 and higher)
Float 2 (Bottom Float)	45003	5002	2	Read Only	Water Interface Level in Tank Floating point upper two bytes (v3.14 and higher)
	45004	5003		Read Only	Water Interface Level in Tank Floating point lower two bytes (v3.14 and higher)
Oil Level in Tank (top to bottom)	45005	5004	2	Read Only	Oil Level in Tank(top-bottom) Floating point upper two bytes (v3.14 and higher)
	45006	5005		Read Only	Oil Level in Tank(top-bottom) Floating point lower two bytes (v3.14 and higher)

Total Volume (top level x K factor)	45007	5006	2	Read Only	Total Volume(top level x K factor) Floating point upper two bytes (v3.14 and higher)
	45008	5007		Read Only	Total Volume(top level x K factor) Floating point lower two bytes (v3.14 and higher)
Oil Volume (top level – bottom level) x K factor	45009	5008	2	Read Only	Oil Volume (v3.14 and higher) Floating point upper two bytes
	45010	5009		Read Only	Oil Volume (v3.14 and higher) Floating point lower two bytes
Water Volume (bottom level x K factor)	45011	5010	2	Read Only	Water Volume(bottom level x K factor) Floating point upper two bytes (v3.14 and higher)
	45012	5011		Read Only	Water Volume(bottom level x K factor) Floating point lower two bytes (v3.14 and higher)
Temperature1	45013	5012	2	Read Only	Temperature1 (v3.14 and higher) Floating point upper two bytes
	45014	5013		Read Only	Temperature1 (v3.14 and higher) Floating point lower two bytes
Temperature2	45015	5014	2	Read Only	Temperature2 (v3.14 and higher) Floating point upper two bytes
	45016	5015		Read Only	Temperature2 (v3.14 and higher) Floating point lower two bytes
Temperature3	45017	5016	2	Read Only	Temperature3 (v3.14 and higher) Floating point upper two bytes
	45018	5017		Read Only	Temperature3 (v3.14 and higher) Floating point lower two bytes
Temperature4	45019	5018	2	Read Only	Temperature4 (v3.14 and higher) Floating point upper two bytes
	45020	5019		Read Only	Temperature4 (v3.14 and higher) Floating point lower two bytes
Temperature5	45021	5020	2	Read Only	Temperature5 (v3.14 and higher) Floating point upper two bytes
	45022	5021		Read Only	Temperature5 (v3.14 and higher) Floating point lower two bytes
Temperature6	45023	5022	2	Read Only	Temperature6 (v3.14 and higher) Floating point upper two bytes
	45024	5023		Read Only	Temperature6 (v3.14 and higher) Floating point lower two bytes
Temperature7	45025	5024	2	Read Only	Temperature7 (v3.14 and higher) Floating point upper two bytes
	45026	5025		Read Only	Temperature7 (v3.14 and higher) Floating point lower two bytes
Temperature8	45027	5026	2	Read Only	Temperature8 (v3.14 and higher) Floating point upper two bytes

	45028	5027		Read Only	Temperature8 (v3.14 and higher) Floating point lower two bytes
Battery Voltage	45029	5028	2	Read Only	Battery Voltage(*100 for 16 bit) Floating point upper two bytes (v3.14 and higher)
	45030	5029		Read Only	Battery Voltage(*100 for 16 bit) Floating point lower two bytes (v3.14 and higher)
Error Register (see Table 4)	45031	5030	2	Read Only	Floating point upper two bytes (See Notes) (v3.14 and higher)
	45032	5031		Read Only	Floating point lower two bytes (See Notes) (v3.14 and higher)
Warnings Register (see Table 3)	45033	5032	2	Read Only	Floating point upper two bytes (See Notes) (v3.14 and higher)
	45034	5033		Read Only	Floating point lower two bytes (See Notes) (v3.14 and higher)

Table 4. Warning Codes

Binary Value (for 16 bit Unsigned)	Warning Code	Indication
	0	No warnings
Bit O	1	Possible level degradation
Bit 1	2	Possible level degradation due to level

Table 5. Error Codes

Binary Value (for 16 bit Unsigned)	Error Code	Indication
	0	No errors
Bit O	1	Can't resolve level reading or no float is detected
Bit 1	2	One float is out of range on a two float sensor
Bit 2	4	Too many groups
Bit 3	8	Not used
Bit 4	16	Transmit to slave processor for level failed
Bit 5	32	Transmit to slave processor for temperature failed
Bit 6	64	Receive from slave processor for level failed
Bit 7	128	Receive from slave processor for temperature failed
Bit 8	256	No slave processor responding

Notes for advanced users:

- 1. Writing
 - a. 1007 at register address 107 will set register 107 to "0" This will set the device registers that hold top float, bottom float, and temperature to 16 bit Unsigned integer. 1008 at register address 107 will set register 107 to "1" and will set the device hold registers 43991(3990) to 44007(4006) to 32 bit floating point format.
 1009 at register address 107 will set register 107 to "2" and will set the device hold registers 45001(5000) to 45034(5033) to 2 x 16 bit floating point format.
 - b. Reading register 107 will return "0" for 16 bit, "1" for 32 bit floating point, and "2" for 2 x 16 bit floating point format.
- 2. Supported functions are:
 - a. 03- Read holding registers (104 to 125 and 3990 to 4006 and 5000 to 5032 in two increment for floating point in two 16 bits words mode)
 - b. 06- Preset single register (any register in range 104 to 125)
 - c. 16- Preset multiple registers(any registers in range 104 to 125)
- 3. Modbus RTU Framing Message:
 - a. 03 21 words for integer 16 bits , and 38 words for 32 bit floating point mode
 - b. 06 5 words (including slave address, function code, register address, number of registers and CRC)
 - c. 16 21 words (including slave address, function code, register address, number of registers and CRC)
- 4. CRC word is transmitted Low Byte first.
 - a. Data is sent High byte first.

Model 2100 DLS Specifications

Measurement Length:

Available from 2 to 35 feet in length

Tubing Material:

316L stainless steel - standard 18 gauge - standard Fiberglass- optional

Float:

Nitrophyl/stainless steel OR Harsh Environment Float: Polyamide (nylon) 3-D printed (available for ¼-inch resolution stainless steel sensor only))

One used for single liquid Two used for water interface Designed to fit though a 3-inch NPT female tank port (Stainless Steel) Designed to fit though a 4-inch NPT female tank port (Fiberglass)

Level measurement increments and accuracy:

1/4 inch resolution, +/- 1/8 inch accuracy 1/2 inch resolution, +/- 1/4 inch accuracy 1/8 inch resolution, +/- 3/16" accuracy

Operating temperature range :

-40° C to +85° C

Temperature Measurement:

First sensor 12-14 inches from bottom Up to 8 temperature sensors available with desired spacing: optional +/- 1.5° C accuracy

Power Requirements:

5.6 VDC to 12.9 VDC

Power Consumption:

15mA nominal 20mA maximum

Pressure:

15 psi: standard Higher pressure ratings available as custom orders

Communication:

RS485

Two- or four-wire communications Baud rate and parity programmable (up to 57600 baud) (v.3.15 and higher) 4-20mA signal available when connected to digital-to-analog converter board Wireless capable

Protocol:

Modbus RTU 16 bit unsigned integer* Modbus RTU 32 bit floating point* Modbus RTU (2x 16 bit) for alternate 32 bit floating point** Serial data via ASCII *Note Modbus RTU available in version 3.13 and higher. **Available in version 3.14 and higher.

Wiring:

Two-wire communication - two twisted pair, (16-18 AWG) recommended Four-wire communication - three twisted pair, (16-18 AWG) recommended

Classification:

Class I, Div 1, Group D Hazardous Locations (when connected to an approved intrinsically safe barrier board)

Certification:

ANSI/UL-913 CAN/CSA C22.2, No. 157

Figure 1. Model 2100 Digital Level Sensor

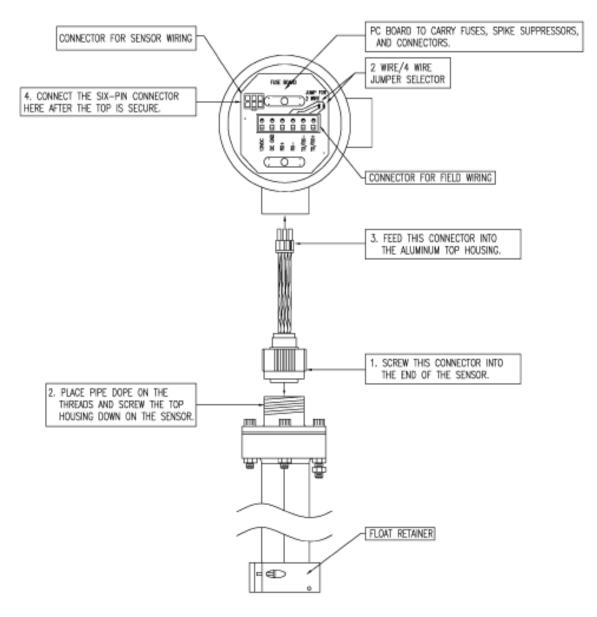


Figure 2. DLS2100 Assembly Diagram

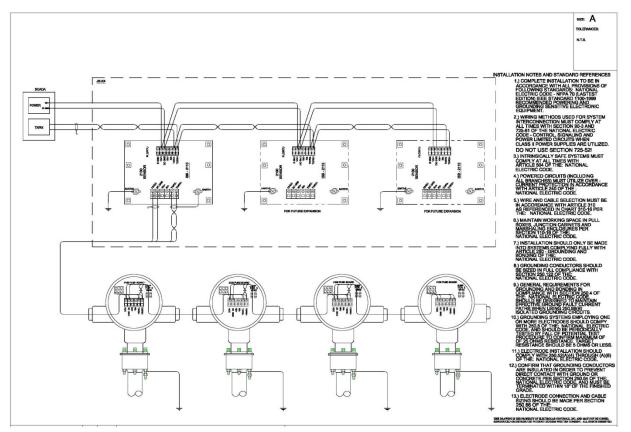
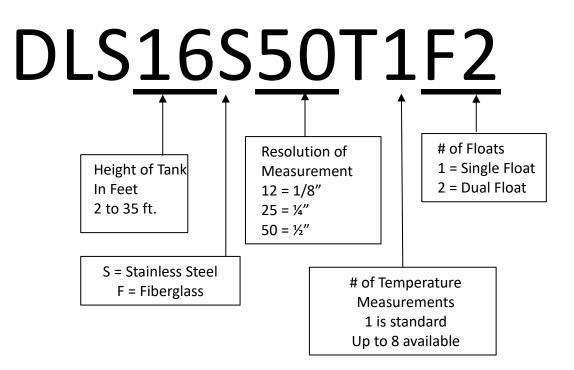



Figure 3. DLS2100 Connection Diagram

Part Numbering System

The sample below is the part number for a 16-foot sensor with ¼ inch resolution, one temperature sensor, and a single float going into a tank with a 4-inch port and being wired up as two-wire RS485.

Figure 4. DLS Part Numbering System

In addition to the information provided within the part number, other information is necessary when ordering:

- Total Tube Length: Default is Measurement Length plus 18 inches. Note: If installing in a dome-top tank, like a fiberglass tank, you will need to order a sensor that is 1' longer than the tank height to accommodate the extra height the dome adds.
- **Baud Rate and Parity desired:** Default is 9600, N, 8, 1. If other baud rate and parity are required, please specify.
- Unit Numbers Required: If ordering more than one sensor for a location, then you may have the level sensors pre-addressed with the required unit numbers prior to shipment for the tanks on that location. Example: If there are 3 tanks on one location, then specify that the level sensors be addressed U01, UO2, and U03. Alternate numbering sequences may be chosen. If no unit numbers are specified, then default will be Unit 01.

Contact Information

For further information or for assistance, please contact: Electrolab, Inc. 159 Enterprise Parkway Boerne, Texas 78006 Phone: (210) 824-5364 TF: (888) 301-2400 Email: <u>InsideSales@electrolabcontrols.com</u> www.electrolabcontrols.com